pH-independent retrograde targeting of glycolipids to the Golgi complex.

نویسندگان

  • Florencia B Schapiro
  • Clifford Lingwood
  • Wendy Furuya
  • Sergio Grinstein
چکیده

A small fraction of the molecules internalized by endocytosis reaches the Golgi complex through a retrograde pathway that is poorly understood. In the present work, we used bacterial toxins to study the retrograde pathway in Vero cells. The recombinant B subunit of verotoxin 1B (VT1B) was labeled with fluorescein to monitor its progress within the cell by confocal microscopy. This toxin, which binds specifically to the glycolipid globotriaosyl ceramide, entered endosomes by both clathrin-dependent and -independent pathways, reaching the Golgi complex. Once internalized, the toxin-receptor complex did not recycle back to the plasma membrane. The kinetics of internalization and the subcellular distribution of VT1B were virtually identical to those of another glycolipid-binding toxin, the B subunit of cholera toxin (CTB). Retrograde transport of VT1B and CTB was unaffected by addition of weak bases in combination with concanamycin, a vacuolar-type ATPase inhibitor. Ratio imaging confirmed that these agents neutralized the luminal pH of the compartments where the toxin was located. Therefore, the retrograde transport of glycolipids differs from that of proteins like furin and TGN38, which require an acidic luminal pH. Additional experiments indicated that the glycolipid receptors of VT1B and CTB are internalized independently and not as part of lipid "rafts" and that internalization is cytochalasin insensitive. We conclude that glycolipids utilize a unique, pH-independent retrograde pathway to reach compartments of the secretory system and that assembly of F-actin is not required for this process.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Retrograde transport from the Golgi complex to the ER of both Shiga toxin and the nontoxic Shiga B-fragment is regulated by butyric acid and cAMP

Endocytosed Shiga toxin is transported from the Golgi complex to the endoplasmic reticulum in butyric acid-treated A431 cells. We here examine the extent of this retrograde transport and its regulation. The short B fragment of Shiga toxin is sufficient for transport to the ER. The B fragment of cholera toxin, which also binds to glycolipids, is transported to all the Golgi cisterns, but cannot ...

متن کامل

Dynamic measurement of the pH of the Golgi complex in living cells using retrograde transport of the verotoxin receptor

The B subunit of verotoxin (VT1B) from enterohemorrhagic Escherichia coli is responsible for the attachment of the holotoxin to the cell surface, by binding to the glycolipid, globotriaosyl ceramide. After receptor-mediated endocytosis, the toxin is targeted to the Golgi complex by a process of retrograde transport. We took advantage of this unique property of VT1B to measure the pH of the Golg...

متن کامل

PtdIns4P recognition by Vps74/GOLPH3 links PtdIns 4-kinase signaling to retrograde Golgi trafficking

Targeting and retention of resident integral membrane proteins of the Golgi apparatus underly the function of the Golgi in glycoprotein and glycolipid processing and sorting. In yeast, steady-state Golgi localization of multiple mannosyltransferases requires recognition of their cytosolic domains by the peripheral Golgi membrane protein Vps74, an orthologue of human GOLPH3/GPP34/GMx33/MIDAS (mi...

متن کامل

Evidence that the transport of ricin to the cytoplasm is independent of both Rab6A and COPI.

Cholera toxin, Shiga toxin and ricin are examples of protein toxins that require retrograde transport from the Golgi complex into the endoplasmic reticulum (ER) to express their cytotoxic activities and different toxins appear to use different pathways of retrograde transport. Cholera toxin contains the mammalian retrograde targeting signal KDEL and is believed to exploit the coat protein I (CO...

متن کامل

Studying organelle physiology with fusion protein-targeted avidin and fluorescent biotin conjugates.

We have developed and used a novel method for studying the lumenal pH of specific cellular organelles: a membrane-permeable, pH-sensitive fluorescein-biotin derivative is targeted to specific organelles expressing avidin chimera proteins. Until recently, the major hurdle to studying organelle pH in live cells had been the lack of appropriate methods for targeting pH probes to specific organelle...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The American journal of physiology

دوره 274 2 Pt 1  شماره 

صفحات  -

تاریخ انتشار 1998